Genomics in Cancer: Continuing to Push the Leading Edge

genomics in cancer - hannes smarason

Genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes.

The progress in the use of genomics to help prevent and treat cancer continues to grow at a pace that is impressive. Indeed, there is expanded use of genomics to drive patient care and improve outcomes across an ever-expanding number of cancers by a growing number of oncologists.

Genomic Knowledge Can Clearly Drive Better Care

Applying genomics to cancer treatment is a powerful clinical application, as genomics can provide a window into how to best treat a patient’s particular cancer as it:

  1. may help better understand the genetics of the tumor itself, and
  2. can provide insight into how cancerous tumors may grow and spread over time.

With a genomic-based approach to cancer care, oncologists can more personally tailor anti-cancer treatments to an individual tumor’s mutations, thus molecularly targeting the specific cancer’s Achilles heel. Already, there are well-documented successes of molecularly targeted anti-cancer agents, such as cancer drugs that target certain genes—HER2, EFGR, ALK, and others.

In 2015, the pace of adoption of genomics in clinical oncology has advanced significantly. Recent evidence of the accelerating use of genomics to help fight cancer includes:

  • Evolving from ‘why’ to ‘how’ to use genomics at leading cancer centers. At the top cancer care facilities, genomics has become part of the programmatic approach to provide certain cancer patients with optimal care—care that is fundamentally designed to lead to the best outcomes. The question for leading medical centers globally has evolved over the last few years from “do we need genomics?” to “for which cancer types and at what stages of cancer treatment and diagnosis can we best use genomic sequencing and analysis?”—an evolution from “why?” to “how?” at a very fundamental level. The accelerating use and deployment of genomics by leading medical facilities validates that they are deriving significant value from genomics, and that value is resulting ultimately in meaningfully advancing better care for cancer patients.
  • Expanding potential applications of genomics within different types of cancers, broadening the types of cancers and tumors that can potentially benefit from genomics. Researchers and clinicians continue to publish a wealth of information validating the potential of genomics to improve outcomes in certain types of cancer patients. In 2015 alone, highlights of these advancements include certain prostate cancers, brain cancers, rare types of pediatric kidney cancers, and even potential targets in certain non-small cell lung cancers.
  • Broadening acceptance in cancer prevention. Driven in part by the education of oncologists and physicians generally and in part by the empowerment of knowledgeable patients, people are seeking and benefiting from genetic tests that reveal their personal risk for certain tumors (such as BRCA for breast or ovarian cancers). The idea of using genomic analysis to predict an individual’s cancer risk by comparing their genome with databases of confirmed genetic mutations linked to disease is—for certain individuals with specific family histories and genetics—driving appropriate medical decisions for patients who may be at high risk for certain cancers.
  • Powering clinical trials with genomics. The use of genomics in cancer clinical trials – whether for inclusion in data-gathering or even screening of patients—has gone from rare to commonplace over recent years, and is improving knowledge around the safety and efficacy of drugs in cancer and beyond. Two large-scale cancer trials have been initiated in 2015 with the bold goal of substantially advancing the understanding and use of genomics in cancer care. The anti-cancer treatments being tested in both trials were selected for their activity on a specific molecular target, independent of tumor location and histology. The two trials are actively enrolling and are (1) an American Society of Clinical Oncology (ASCO)-sponsored study, called TAPUR (Targeted Agent and Profiling Utilization Registry) and National Cancer Institute (NCI) and is called NCI-MATCH (Molecular Analysis for Therapy Choice). These trials and any subsequent follow-on trials will doubtless provide insightful information to drive the growing use of genomics in improving cancer care.

In summary, genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes. There are at least four frontiers where we can see substantial progress in the use of genomics in cancer care, including expanded use in leading medical centers, increased potential applications within cancer, widespread acceptance in cancer prevention, and an increase in the use of genomics within clinical trials. I am personally committed to continue to drive and accelerate this genomic revolution to continue to bring true progress in improving cancer care to patients in need globally.

email

2015: An Inflection Point for Genomics Adoption Around the Globe

2015 genomics hannes smarason

2015 is shaping up to be a significant year in the advancement and adoption of genome sequencing and personalized medicine around the globe.

The year 2015 is shaping up to be an inflection point in the advancement and adoption of genome sequencing and personalized medicine.  While private initiatives are often the centerpiece of media coverage, leading governments clearly have advanced a number of important initiatives this year.  Indeed, many governments around the globe are actively promoting widespread utilization of genomics, supporting academic research, establishing industry guidelines, and raising public awareness.

Governments Serving as Catalysts for Genomics Progress

The efforts of officials worldwide to engage with and support the private sector’s tremendous potential have helped to make 2015 a significant year for expanding the use of genomics in clinical care.  A few highlights of 2015 include:

— In the U.S., President Obama made precision health one of the centerpieces of his State of the Union address in January. Obama’s administration kicked this effort off by requesting a $215M investment in a Precision Medicine Initiative with the following key attributes:

  • The cornerstone of Obama’s proposal is the plan to collect and analyze genomic data from a million or more volunteers;
  • The initiative further supports genomics through expanded research into the genetic mutations that drive cancer;
  • Additional funding is earmarked to maintain databases and develop industry standards.

— Germany and the U.K. expanded eligibility for government-funded genetic testing for breast cancer patients.

— Israel announced its intent to establish a government-sponsored genetic database.

— Through the National Institutes of Health and the National Cancer Institute, the U.S. federal government proposed dozens of new funding opportunities to support research in genetic sequencing and analysis.

— Japan launched an Initiative on Rare and Undiagnosed Diseases to provide genomic analysis and expert consultation for up to 1,000 individuals with childhood onset of undiagnosed conditions.

— Through Genomics England (which I described in further detail here), the U.K. Department of Health tapped WuXi NextCODE and others to begin interpretation in its groundbreaking 100,000 Genomes Project.

In news today, the trend toward globalization of genomics continues, as private sector leaders aligned to meet the needs of the forward-looking government health initiatives of Qatar:

— WuXi NextCODE and the Sidra Medical and Research Center partner to power population genomics and precision medicine in Qatar. Our partnership will:

  • Facilitate clinical diagnostics;
  •  Accelerate research; and
  • Support the Qatar Genome Project.

As I have discussed in an earlier post, large-scale population studies are an essential step in harnessing the power of genomics to improve health worldwide.  Since WuXi NextCODE’s foundational heritage as part of deCODE Genetics’ landmark analysis of Icelanders, we have always developed the tools to help translate sequence data into precision medicine on a large scale.  In our work with Genomics England, our collaboration with Fudan Children’s Hospital to diagnose rare diseases in China, and now our partnership with Sidra, the team at WuXi NextCODE is leading the effort to realize the potential of genomics on a truly global scale. The increasing interest in supporting those efforts shown by leading governments across the globe is helping to drive the successful use and application of genomics worldwide.