Genetics-Based Advances in Rare Diseases: Ideas into Action

NextCODE Health-Claritas Genomics

Claritas Genomics and NextCODE have established a collaboration to support rare disease clinical care.  Combining robust sequencing with integrated diagnostic capabilities, the partnership aims to accelerate and augment the services provided to leading pediatric care organizations.

Today we have a tremendous opportunity to use the data being generated from genome sequencing to address the mysteries of rare genetic diseases affecting children. Though these diseases individually are rare, according to Global Genes, an estimated 7,000 different types of rare diseases affect more than 30 million people in the U.S., roughly half of whom are children.

To conduct diagnostic testing for pediatric genetic disorders, leading children’s hospitals are collaborating with specialized laboratories, including Claritas Genomics, a recognized leader in specialized pediatric genetic testing affiliated with Boston Children’s Hospital, part of the Harvard Medical School system.

The real opportunity lies in the analysis of raw genomic sequence data to identify patterns or markers of a rare disease. While it has been theoretically possible to use genomic sequencing to diagnose most rare diseases, a major hurdle has been in integrating dynamic informatics tools that can quickly interpret the data into accurate diagnostic insights and, ultimately, treatment options.

This is why Claritas Genomics and NextCODE have today established a collaboration, enhancing their collective capabilities to support rare disease clinical care. Combining robust sequencing with integrated diagnostic capabilities, the partnership will aim to accelerate and augment the services provided to leading pediatric care organizations.  Claritas has established a wide range of tests for genes known to be associated with pediatric disorders, which NextCODE is integrating into its clinical interface, resulting in accurate, reliable clinical reports. Learn more about NextCODE’s pioneering activities here.

Enabling this rapid, integrated approach to genomics-based care for rare diseases holds great promise for the community and for the many families who are anxiously seeking answers to these mysterious diseases.


Imagine the Potential: The World’s First Online Hub for Global Genomic Data Access

The NextCODE Exchange, a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The NextCODE Exchange, a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The field of genomic medicine is rapidly advancing as the research community becomes more comfortable manipulating genomic data with the goal of discovering insights about disease causes and risks. Yet each database is hosted within separate organizations, organized in unique ways and vastly too cumbersome to easily share with others who may be working on similar research.

This weekend a new tool launched to enable just that. The NextCODE Exchange (see release here), a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The availability of this Exchange is a critical advance in extending the utility of genomic data by allowing organizations around the world to access and harmonize large complementary datasets, potentially multiplying their study data sets to gain more reliable insights than ever before.

Already, numerous organizations are participating in the NextCODE Exchange to add and share their genomic data, including clinicians and researchers affiliated with Boston Children’s Hospital, University College Dublin, Queensland Institute of Medical Research (Australia), and Saitama Medical University (Japan).

As new institutions look to the Exchange to share genomic data, this hub holds significant potential to help advance progress in genomic-based medicine.

Learn more about the NextCODE Exchange here.

Genomics and Rare Diseases: Hope for Solving Unanswered Questions

genomics and rare diseases

Leading institutions around the world are leveraging the power of advanced sequencing technology to solve some of the greatest unanswered questions in medicine.

As we learn more about disease biology and uncover new insights thanks to the availability of genomic technologies, we are making meaningful progress in identifying means to address many rare diseases for which there is little medical hope today.

With these new genomic tools and insights, a wide range of opportunities has emerged to improve diagnosis and treatment of rare diseases. Over the past few years, DNA sequencing has begun to uncover the causes of rare diseases and, at the heart of each case solved is a patient and a family that has gained new understanding about their condition. With time, these success stories in diagnosis will lead to more successes in treatment.

Now more than ever, there is more hope that identifying the key mutations will lead to better understanding of the biology of disease and then to novel therapies. Better and faster technologies are being promoted by leaders in the field of genomics that are enabling much more rapid analysis and interpretation of a patient’s genome to find answers. The critical first step is to obtain sufficient data to analyze, compare it against a robust database of reference data, and gain an accurate understanding of potential mutations associated with these rare conditions.

As researchers focus on specific areas, new partnerships are extending access to data and accelerating progress with rare diseases around the world. Recently, genomic analysis collaborations were initiated by ACoRD at University College Dublin to implement NextCODE’s proprietary database and analytical tools to mine whole genome data for variants linked to autism spectrum disorders. [See blog post here]. Another genomic analysis program with ANZAC in Australia applies advanced sequencing analysis technology to better understand X-linked Charcot-Marie-Tooth Syndrome, a rare and progressively debilitating neurodegenerative disorder. [See blog post here] More collaborations are in the works and we’ll be talking about them as soon as we can.

We look forward to the results of these and other collaborations as leading institutions around the world make efforts to leverage the power of advanced sequencing technology to solve some of the greatest unanswered questions in medicine.

Seeking Genomic Answers to Autism and Rare, Idiopathic Diseases

rare-diseases-hannes-smarasonAs more is learned about autism spectrum disorders, more questions seem to arise. Yet with DNA sequencing, researchers are able to investigate the genetic roots of this and other diseases that are not yet well understood. It’s another instance in which genomics can shed light upon the workings of that most important organ system—the brain—which is so difficult to analyze.

Institutions around the world have sought to fill in pieces of the autism puzzle with links to other disorders and diagnostic insights, and these efforts have in recent years uncovered a number of possible genetic triggers and pathways. Yet the causes and manifestation of these diseases remain largely elusive.

University College Dublin’s Academic Centre on Rare Diseases (ACoRD) in Ireland, which is world renowned for its discoveries in rare genetics, is using NextCODE’s genome analysis technology to power large-scale, sequencing-based diagnostics programs and genome discovery efforts to study autism and rare pediatric disorders.

Recognizing the enormous potential of large-scale sequencing to mine whole genomes and accelerate discoveries in rare genetic diseases, ACoRD will focus on some of the most challenging areas to inform and provide new directions for research that may help lead to diagnosis, treatment, and even prevention for these disorders. In using NextCODE technology both for analyzing as well as storing large-scale genomic data, ACoRD is well positioned to become a focal point for multinational research and clinical diagnosis in conditions that require the gathering and collective analysis of genomes from many participants in many countries.

Rare Disease Research Focuses Charcot-Marie-Tooth Syndrome, Guided by DNA Sequencing

rare diseases nextCODE hannes smarasonGenome sequencing is a relatively young technology and has been in active use in the research space for just over a decade. Yet already it has found very meaningful applications in clinical care, supporting the world’s leading researchers in discovering answers to some of the most rare and confounding diseases. The interface between the research and clinical realms is seeing some of the most exciting and fruitful applications of the power of sequencing. The ANZAC Research Institute in Sydney, Australia sits right at this nexus and is using the latest DNA sequencing and interpretation technology from NextCODE to mine genomes in search of genetic mutations that are associated with X-linked Charcot-Marie-Tooth syndrome (CMTX). CMTX is a rare, progressively debilitating neurodegenerative disorder that can be caused by mutations in many different places in the genome, including the X chromosome. At present there is no cure or drug treatment available. The team at the ANZAC Research Institute, recognized for their expertise in familial genetics, sought out the unique capabilities of the NextCODE analysis platform to investigate spaces outside the normal coding areas of genes. The aim is as pioneering as the technology: to identify not just just single SNPs but also structural variants that conventional approaches have not been able to search for systematically and link to CMTX. With dedicated research minds and the latest technology, the program aims to better understand this disease and potentially find novel targets for the development of therapies. This is one great example of the many opportunities to improve lives that are being generated by insights gained through the rapidly evolving field of genome sequencing.