Genomic Information and the Importance of Communication

Communicating clinically useful results both to doctors and patients will drive success

genomics-communications-hannes-smarasonAround the world, researchers and clinicians are taking on the challenge of integrating genomic analysis into medical practice. Physicians and patients are increasingly aware of the potential utility of genomic data. As genomics continues to become a more powerful tool in healthcare, there is a clear and compelling need for a commitment to excellence in communication.

At WuXi NextCODE, we are proud to provide sequencing and analysis resources that help doctors:

  • Shorten diagnostic odysseys, as I have discussed here; and
  • Improve treatment choices, as I have discussed here.

Maximizing the opportunities afforded by the ‘big data’ of genomics necessitates collaboration and communication, which I discuss in more detail here. As part of our genomics business, we are dedicated to the highest standards of communication – indeed, we view effective communication as central to how our technologies will improve health in both the near and the long term.

The task of harnessing the vast and expanding quantity of genomic data to improve clinical care requires interpretation and discovery powered to translate the data into clinically useful information. Leveraging that information to improve patient outcomes also requires clear and accurate communication:

  • Between researchers and clinicians;
  • Between specialists in different medical fields;

And, increasingly,

  • Between doctors and patients.

As the recent CLARITY Undiagnosed competition highlighted, applying genomic data to medical practice involves interpreting the sequenced genomes and identifying molecular diagnoses – and a third step: communicating clinically useful results both to doctors and to patients.

The CLARITY challenge winners, including WuXi NextCODE, were explicitly recognized for the quality and clinical utility of their reports.

Studies and surveys have shown that many people favor greater access to genetic information. Individuals want analysis of their genomes in order to:

  • Reveal their unique risk factors for inherited diseases;
  • Pinpoint a diagnosis if they are ill; and
  • Guide their decisions if they are seeking treatment.

Genomics is helping to inform patients in all these ways.

In addition, genomics demonstrates enormous potential to empower individuals.

The hundreds of thousands of people who purchase genomic testing through direct-to-consumer businesses like 23andMe are demonstrating a robust enthusiasm for gathering genomic information. And patients enrolled in clinical trials and donors participating in population-wide genomic studies express a desire to be more informed. Patients and consumers consistently seek resources that transform their personal genomic signatures into information they can use to make better healthcare and lifestyle decisions.

And most patients and consumers are willing – often eager – to share their genomic information to aid medical research and discovery. 23andMe reports, for example, that 80% of its customers consent to share their genomes for research.

It is unmistakably clear that, in the not-too-distant future, every individual in many countries around the world will have their genome sequenced. Throughout a person’s life, medical professionals will be able to access genomic information to guide health decisions – from identifying inherited conditions to assessing risk for complex diseases to calculating appropriate treatments, drugs, and even dosages for truly personalized healthcare.

The more effectively we communicate – the more we share information within the research community and parlay that into clinically useful information for patients – the greater the benefit to all.

As much as people understandably prefer simple, definitive answers to questions about their personal health, the information that genomics provides can be complex and even ambiguous. A genetic variant might be identified, for example, that can be tied to family medical history and translated into a probability or likelihood. This was the case for Angelina Jolie Pitt, who noted in her New York Times piece that her genomic analyses “gave [her] an estimated 87 percent risk of breast cancer and a 50 percent risk of ovarian cancer.” Percentage risks are nuanced, and individual perceptions of acceptable risk vary considerably. It is therefore difficult to define precisely the circumstances under which a genetic variant becomes clinically actionable.

Or a genetic variant might be identified which gives physicians clues but does not explicitly identify a specific disease. For example, a patient seeking a diagnosis may have a genetic variant that correlates to a number of diseases involving dysregulation of lipid metabolism. Identifying the variant provides physicians and caregivers with a clear direction for further analysis and treatment, but does not yield a conclusive diagnosis or prognosis.

Or a genetic variant might be identified which has yet to be understood as causing or playing a role in disease. Such a variant may occur by chance and have no medical relevance, or its meaning may be uncovered as science in the field advances. But for the person who is having the genomic information analyzed today, it offers no actionable information.

As all of these examples illustrate, effective communication about genomic information can be a significant challenge. There is a risk that poor communication will be a barrier to the adoption of genomic medicine, but if we strive to communicate clearly with patients and the public, our successes will likely accelerate more widespread use of genomics. The role of genomics in transforming health care will grow exponentially as we all endeavor to improve communication with patients, their families, and the public at large.

Our work at WuXi NextCODE is advancing the transformation of medical practice through genomics. As part of that vision, we recognize the critical importance of facilitating effective communication among all stakeholders. We provide the resources that enable researchers and clinicians to identify disease and inform treatment decisions. And we strive to add additional value by communicating about genomic information accurately and proactively, all with the ultimate goal of meaningfully improving patient outcomes.

Genomics: Big Data Leading to Big Opportunities

The Big Data of Genomics

WuXi NextCODE Exchange

The big data of genomics will continue to expand, and our approaches to analyzing genomic data need to continue to evolve to meet the growing demands of clinicians and researchers. Cloud-based platforms such as WuXi NextCODE’s Exchange are essential to address the fundamental big data challenge of genomics.

Beyond question, we are in the midst of an explosion of “Big Data” in many facets of human endeavors. In fact, data-storage leader IBM asserts that roughly 2.5 quintillion bytes of data are generated every day and 90% of the world’s data was created in the last two years.

An outpouring of articles in scientific journals and major newspapers has highlighted the promising potential of big data in medicine, including a special section in the current issue of Nature.  Genomics has become a major source of the growth of such big data, particularly as the cost of sequencing genomes has plummeted. The raw sequence data for just one person’s whole genome use as much as 100GB—and already hundreds of thousands of individual genomes have been sequenced.  With more than 2,500 high-throughput sequencing instruments currently used in 55 countries across the globe, more genomes are added every day. The aggregate amount of genomic data is growing explosively, and next-generation sequencing (NGS) sequencing data are estimated to have doubled in volume annually since 2007.

The accumulation of genomic data is a worldwide phenomenon.  Impressive population-wide sequencing efforts are leading the way, from 100,000 genomes in England, Saudi Arabia, and Iceland to 350,000 in Qatar to a million in both China and the U.S.

And earlier this month, the CEO of the Cleveland Clinic predicted that soon children will routinely have their whole genomes sequenced at birth, implying a near-future in which 10s of millions of new genomes are sequenced annually.

Turning Data into Resources

But sequencing genomes is not enough, and the creation of genomic big data is just the beginning.

Thanks to the analysis of big data in genomics and associated informatics, we are seeing meaningful progress in cancer care and the diagnosis of rare diseases, as I have discussed here and here. We clearly have a tremendous opportunity to use the big data of genomics to continue to drive a revolution in healthcare.

Yet there is a broad consensus that a ‘data bottleneck’ is hampering collaboration and discovery. Not all researchers and physicians confronting the current onslaught of genomic big data can readily determine how to use genetic information to prevent or treat disease. To succeed, researchers and physicians clearly need resources that:

  • Draw together useful data from disparate sources;
  • Facilitate analysis and collaboration; and
  • Improve clinical practice.

The power of genomic analysis needs to expand outward from major research centers and hospitals to the myriad clinics and community hospitals where many patients receive care. To have the greatest impact on the broadest population, clinicians throughout the world’s health systems need access to the big data generated by DNA sequencing, even—or perhaps especially—if they are not affiliated with research institutions. They also need to be able to make sense of the data they have access to.

Answers in the Cloud

Sequencing provides the raw data to uncover the genetic variants that contribute to disease. But the datasets are too big to transfer repeatedly—and too big even for smaller hospitals, labs, or clinics to store onsite. Key medical advancements require not only big data, but also tools and resources to generate, interpret, and share analysis of millions of genomes.

Cloud-based platforms—such as WuXi NextCODE’s Exchange—are essential to address the fundamental big data challenge of genomics. Collaboration in the cloud works to dismantle existing “data silos”—genomic information hosted only on local servers and analyzed on idiosyncratic, closed platforms. The NextCODE Exchange, in contrast, is a browser-based hub that affords secure, seamless collaboration with colleagues around the world. Moreover, users get access to NextCODE’s tools for making the critical links between variation in the genome and disease and other phenotypes, backed by harmonized links to the the most important public reference data.

And cloud-based computing is inherently scalable: resources for data storage and analysis expand as needed, allowing researchers and physicians to leverage massive datasets to improve patient care in the clinic. The big data of genomics will continue to expand, and our approaches to analyzing genomic data need to continue to evolve to meet the growing demands of clinicians and researchers.

At WuXi NextCODE, we have built upon our heritage of conducting the largest analysis of genomic data (deCODE’s path-breaking Icelandic analysis) by assembling an ever-growing database of human genomes. We are committed to driving the movement of sequence data into patient diagnosis and care through user-friendly, leading-edge analysis and informatics. I am confident that data analysis and collaboration in the cloud will revolutionize healthcare, and exceptionally proud that WuXi NextCODE’s Exchange is at the forefront of this exciting advancement.

FDA Approval Moves DTC Genetic Testing Forward

DTC genetic testing, Hannes Smarason

23andMe is relaunching its direct-to-consumer genetic tests in the U.S. with the approval of the FDA to provide consumers “carrier status” information on 36 genes that can cause rare diseases. I am optimistic that DTC genetic testing will expand its impact over time, ultimately having a tremendous impact on human health globally.

Today, genomics industry maverick, 23andMe, is relaunching its direct-to-consumer (DTC) genetic testing in the U.S., with the approval of the FDA to inform consumers whether they carry a genetic variant for one of 36 rare diseases that could potentially be passed on to their children. In addition to this carrier status information that now meets FDA standards, reports from the newly launched 23andMe test will include information on wellness, traits, and ancestry.

A big positive step forward

For the genomics industry as a whole, this is a significant step forward as the FDA’s decisions have global influence. Indeed, this is a landmark FDA decision, as it is the first time ever that the FDA has allowed such a broad spectrum of medically relevant genetic information to be provided directly to consumers. Both the FDA and 23andMe deserve credit for working through the challenges that, less than two years ago, resulted in the FDA ordering 23andMe to stop marketing its genetic testing kits in the U.S. That the FDA—one of the world’s most thoughtful medical regulatory agencies—has come so far so fast is indicative of the potential it likely sees in DTC genetic testing improving the health of U.S citizens.

A larger journey ahead for direct-to-consumer genetic testing

Moving forward, there are at least two important directions that—in collaboration with the appropriate regulatory agencies, such as the FDA—I think DTC genetic testing will advance:

• DTC genetic testing will expand its reach globally; and
• DTC genetic testing will likely expand the medical impact of its reported results.

DTC genetic testing will expand its reach globally.

Catalyzed by demand for improved health, DTC genetic testing services will inevitably become accessible to much of the world’s population over the decades to come. To be successful, these services will need to be customized by geography and culture and approved by the appropriate local governmental agencies. While the genome is shared by all humans, it is naïve to think that DTC genetic testing services will be the same across all people living anywhere. It is incumbent on industry participants to align their DTC reports and services to best meet the needs of the specific customers in specific countries and geographies—and to do so in a spirit of cooperation with the appropriate governmental health regulators.

DTC genetic testing will likely expand the medical impact of its reported results.

As noted, today’s FDA approval for 23andMe to be able report on carrier status is a significant step forward, but more health data remains to be gleaned—and reported—from an individual’s genomic data. From 23andMe’s announcement, you can see the foreshadowing of what may ultimately be possible:

About [23andMe’s] Carrier Status Tests
[23andMe’s tests] can be used to determine carrier status in adults from saliva collected using an FDA-cleared collection device (Oragene DX model OGD.500.001), but cannot determine if you have two copies of the genetic variant. Each test is most relevant for people of certain ethnicities. The tests are not intended to diagnose a disease, or tell you anything about your risk for developing a disease in the future. On their own, carrier status tests are not intended to tell you anything about the health of your fetus, or your newborn child’s risk of developing a particular disease later in life.

Clearly, working with regulators such as the FDA, and others, such as thoughtful genetic counselors, there is a future potential for the right service to be able to report on people’s risk for developing specific diseases. Informed, health-conscious consumers are very likely to demand access to this information—and millions of individuals have already paid significant sums out of their own pockets to have their genomes sequenced and analyzed. Indeed, from news reports covering 23andMe, we know that when ordered by the FDA to stop providing health information such as the disease risk, their rate of new customer sign-ups dropped by more than half.

I am very optimistic that DTC genetic testing will expand its impact over time, overcoming skepticism and ultimately having a tremendous impact on human health globally. I am proud that our team at WuXi NextCODE will be a part of making this exciting future happen, and today I am especially proud that WuXi Ventures recently invested in 23andMe, making us active supporters of its current and noteworthy success.

Genomics in Cancer: Continuing to Push the Leading Edge

genomics in cancer - hannes smarason

Genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes.

The progress in the use of genomics to help prevent and treat cancer continues to grow at a pace that is impressive. Indeed, there is expanded use of genomics to drive patient care and improve outcomes across an ever-expanding number of cancers by a growing number of oncologists.

Genomic Knowledge Can Clearly Drive Better Care

Applying genomics to cancer treatment is a powerful clinical application, as genomics can provide a window into how to best treat a patient’s particular cancer as it:

  1. may help better understand the genetics of the tumor itself, and
  2. can provide insight into how cancerous tumors may grow and spread over time.

With a genomic-based approach to cancer care, oncologists can more personally tailor anti-cancer treatments to an individual tumor’s mutations, thus molecularly targeting the specific cancer’s Achilles heel. Already, there are well-documented successes of molecularly targeted anti-cancer agents, such as cancer drugs that target certain genes—HER2, EFGR, ALK, and others.

In 2015, the pace of adoption of genomics in clinical oncology has advanced significantly. Recent evidence of the accelerating use of genomics to help fight cancer includes:

  • Evolving from ‘why’ to ‘how’ to use genomics at leading cancer centers. At the top cancer care facilities, genomics has become part of the programmatic approach to provide certain cancer patients with optimal care—care that is fundamentally designed to lead to the best outcomes. The question for leading medical centers globally has evolved over the last few years from “do we need genomics?” to “for which cancer types and at what stages of cancer treatment and diagnosis can we best use genomic sequencing and analysis?”—an evolution from “why?” to “how?” at a very fundamental level. The accelerating use and deployment of genomics by leading medical facilities validates that they are deriving significant value from genomics, and that value is resulting ultimately in meaningfully advancing better care for cancer patients.
  • Expanding potential applications of genomics within different types of cancers, broadening the types of cancers and tumors that can potentially benefit from genomics. Researchers and clinicians continue to publish a wealth of information validating the potential of genomics to improve outcomes in certain types of cancer patients. In 2015 alone, highlights of these advancements include certain prostate cancers, brain cancers, rare types of pediatric kidney cancers, and even potential targets in certain non-small cell lung cancers.
  • Broadening acceptance in cancer prevention. Driven in part by the education of oncologists and physicians generally and in part by the empowerment of knowledgeable patients, people are seeking and benefiting from genetic tests that reveal their personal risk for certain tumors (such as BRCA for breast or ovarian cancers). The idea of using genomic analysis to predict an individual’s cancer risk by comparing their genome with databases of confirmed genetic mutations linked to disease is—for certain individuals with specific family histories and genetics—driving appropriate medical decisions for patients who may be at high risk for certain cancers.
  • Powering clinical trials with genomics. The use of genomics in cancer clinical trials – whether for inclusion in data-gathering or even screening of patients—has gone from rare to commonplace over recent years, and is improving knowledge around the safety and efficacy of drugs in cancer and beyond. Two large-scale cancer trials have been initiated in 2015 with the bold goal of substantially advancing the understanding and use of genomics in cancer care. The anti-cancer treatments being tested in both trials were selected for their activity on a specific molecular target, independent of tumor location and histology. The two trials are actively enrolling and are (1) an American Society of Clinical Oncology (ASCO)-sponsored study, called TAPUR (Targeted Agent and Profiling Utilization Registry) and National Cancer Institute (NCI) and is called NCI-MATCH (Molecular Analysis for Therapy Choice). These trials and any subsequent follow-on trials will doubtless provide insightful information to drive the growing use of genomics in improving cancer care.

In summary, genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes. There are at least four frontiers where we can see substantial progress in the use of genomics in cancer care, including expanded use in leading medical centers, increased potential applications within cancer, widespread acceptance in cancer prevention, and an increase in the use of genomics within clinical trials. I am personally committed to continue to drive and accelerate this genomic revolution to continue to bring true progress in improving cancer care to patients in need globally.

2015: An Inflection Point for Genomics Adoption Around the Globe

2015 genomics hannes smarason

2015 is shaping up to be a significant year in the advancement and adoption of genome sequencing and personalized medicine around the globe.

The year 2015 is shaping up to be an inflection point in the advancement and adoption of genome sequencing and personalized medicine.  While private initiatives are often the centerpiece of media coverage, leading governments clearly have advanced a number of important initiatives this year.  Indeed, many governments around the globe are actively promoting widespread utilization of genomics, supporting academic research, establishing industry guidelines, and raising public awareness.

Governments Serving as Catalysts for Genomics Progress

The efforts of officials worldwide to engage with and support the private sector’s tremendous potential have helped to make 2015 a significant year for expanding the use of genomics in clinical care.  A few highlights of 2015 include:

— In the U.S., President Obama made precision health one of the centerpieces of his State of the Union address in January. Obama’s administration kicked this effort off by requesting a $215M investment in a Precision Medicine Initiative with the following key attributes:

  • The cornerstone of Obama’s proposal is the plan to collect and analyze genomic data from a million or more volunteers;
  • The initiative further supports genomics through expanded research into the genetic mutations that drive cancer;
  • Additional funding is earmarked to maintain databases and develop industry standards.

— Germany and the U.K. expanded eligibility for government-funded genetic testing for breast cancer patients.

— Israel announced its intent to establish a government-sponsored genetic database.

— Through the National Institutes of Health and the National Cancer Institute, the U.S. federal government proposed dozens of new funding opportunities to support research in genetic sequencing and analysis.

— Japan launched an Initiative on Rare and Undiagnosed Diseases to provide genomic analysis and expert consultation for up to 1,000 individuals with childhood onset of undiagnosed conditions.

— Through Genomics England (which I described in further detail here), the U.K. Department of Health tapped WuXi NextCODE and others to begin interpretation in its groundbreaking 100,000 Genomes Project.

In news today, the trend toward globalization of genomics continues, as private sector leaders aligned to meet the needs of the forward-looking government health initiatives of Qatar:

— WuXi NextCODE and the Sidra Medical and Research Center partner to power population genomics and precision medicine in Qatar. Our partnership will:

  • Facilitate clinical diagnostics;
  •  Accelerate research; and
  • Support the Qatar Genome Project.

As I have discussed in an earlier post, large-scale population studies are an essential step in harnessing the power of genomics to improve health worldwide.  Since WuXi NextCODE’s foundational heritage as part of deCODE Genetics’ landmark analysis of Icelanders, we have always developed the tools to help translate sequence data into precision medicine on a large scale.  In our work with Genomics England, our collaboration with Fudan Children’s Hospital to diagnose rare diseases in China, and now our partnership with Sidra, the team at WuXi NextCODE is leading the effort to realize the potential of genomics on a truly global scale. The increasing interest in supporting those efforts shown by leading governments across the globe is helping to drive the successful use and application of genomics worldwide.

Genomics for Rare Diseases: Going Global and Shifting the Care Paradigm

The use of genomics in rare disease diagnosis and treatment is going global

The benefits of genomics in rare diseases are increasingly making a difference to patients, their families, and their physicians, and they are being scaled globally.

The trend of accelerating the use of genomics in rare disease diagnosis and treatment is going global, driven by the important goal of reaching all people around the world, no matter where they live.

Active programs have now been deployed and exist in many populous countries around the world.

For instance, WuXi NextCODE has established active collaborative efforts in three continents, most recently adding Fudan Children’s Hospital as a partner in its efforts to lead whole genome diagnostics for rare diseases in China.

Over the coming weeks, I expect WuXi NextCODE to continue have news of its dedicated efforts to spread the application of genomics for rare diseases to all geographies.

Diagnosing Rare Diseases: Genomics Shifts the Paradigm

Rare diseases are an area of significant advancement for genomics, as the opportunity for improved diagnosis and treatment through the use of genomics is truly remarkable.

According to the National Institutes of Health (NIH), there are over 7,000 rare diseases affecting between 25 and 30 million Americans, which is nearly 1 in 10 people, making the overall prevalence of rare diseases significant. Since NIH believes that approximately 80 percent of rare diseases have genetic origins, the potential for genomic sequencing, interpretation, and analysis to offer a solution here is truly game-changing.

Every day there are new cases of children with “unknown” diseases, many of which are likely related to a hereditary genetic disorder. Sadly, these children and their families often spend years undergoing testing and experimental treatments for a wide range of diseases in an attempt to properly diagnose and treat them; usually, this so-called “diagnostic odyssey” is accompanied by a very high financial and emotional burden.

Genomics offers the potential to deliver a correct and precise diagnosis for rare diseases that have identifiable genetic causes. Indeed, case studies are rapidly accumulating that show that, by offering genomic sequencing and analysis services to patients with a suspected rare genetic disease, mutations that might be causing the disease may be identified, and thus correct treatment can be employed much earlier to eliminate the burden of a long-term diagnostic and treatment odyssey.  A recent article in Bloomberg BusinessWeek highlighted medical histories of two patients who recently received a diagnosis informed by genomics. In both these representative examples, genomic analyses provided an end to the burden, cost, and stress of their multidecade-long diagnostic odyssey:

  • Jackie Smith, 35, spent the 32 years from age 3 unable to receive a correct diagnosis that could account for her weak limbs and turned-in ankles, despite seeing many doctors on numerous occasions. Indeed, Jackie’s parents were told to “take the 3-year-old girl home and enjoy her while they could” …”[her disease] would probably kill her before she was old enough to drive.”  This past February, using genomic interpretation and analyses from Wuxi NextCODE, Claritas Genomics definitively identified her condition as centronuclear myopathy in less than three weeks.
  • Dustin Bennett, 24, would tremble and violently jerk for hours or days at a time and had been developmentally delayed since childhood. After dozens of doctor visits and incorrect diagnoses—seizures, muscle disorders, mental health problems—a Mayo Clinic genomic-based analysis showed he has episodic ataxia type I, a neurological disease characterized by hours-long attacks with no clear trigger. Dustin, a 24-year-old who functions at a first-grade level, is now on the second round of a medication doctors say should help reduce the frequency and severity of his episodes.

The benefits of genomics in rare diseases – to individuals, their families, and their physicians – are increasingly making a difference to patients.  These benefits are being seen in case after case – and they are being scaled globally, as leading medical centers in many countries around the world are using genomics to support their efforts in diagnosing and treating rare diseases.  I believe passionately in the game-changing potential of genomics to help rare disease patients and I am dedicated to advancing world-leading genomics globally to uncover new solutions for patients.

Genomics Offers Game-Changing Solution to Rare Disease Diagnosis, Costs

Hannes Smarason Wuxi NextCODE

As genomics is used more and supported by ever-more robust analysis and interpretation, its potential to offer a solution to diagnosing rare diseases is truly game-changing.

I believe strongly and have previously blogged on the potential for genomics to shift the care paradigm for rare diseases, and here I’d like to detail in particular the huge potential value genomics can add to rare disease diagnosis. According to the National Institutes of Health (NIH), there are over 7,000 rare diseases affecting between 25 and 30 million Americans, which is nearly 1 in 10 people, making the overall prevalence of rare diseases significant. Rare diseases can be chronic, progressive, debilitating, disabling, severe, and life-threatening.

When a patient presents with a spectrum of unusual symptoms, a costly scramble naturally begins to diagnose the patient’s disease. Some people refer to this diagnosis process for rare diseases as a “diagnostic odyssey,” as patients and their families are subjected to test after test while being handed from one doctor to another, oftentimes to medical centers far from their home. Too often, this odyssey yields no concrete diagnosis or—worse—misdiagnosis. The direct medical costs can be significant, and the indirect costs—the frustration and disillusion felt by the patients and the family—can be extraordinary.

Since NIH believes that approximately 80 percent of rare diseases have genetic origins, the potential for genomic sequencing, interpretation, and analysis to offer a solution here is truly game-changing. A recent article in Bloomberg BusinessWeek highlighted medical histories of two patients who recently received a diagnosis informed by genomics. In both these examples, genomic analyses provided an end to the burden, cost, and stress of their multidecade-long diagnostic odyssey:

  • Jackie Smith, 35, spent the 32 years from age 3 unable to receive a correct diagnosis that could account for her weak limbs and turned-in ankles, despite seeing many doctors on numerous occasions. Indeed, Jackie’s parents were told to “take the 3-year-old girl home and enjoy her while they could”…”[her disease] would probably kill her before she was old enough to drive.”  This past February, using genomic interpretation and analyses from Wuxi NextCODE, Claritas Genomics definitively identified her condition as centronuclear myopathy in less than three weeks.
  • Dustin Bennett, 24, would tremble and violently jerk for hours or days at a time and had been developmentally delayed since childhood. After dozens of doctor visits and incorrect diagnoses—seizures, muscle disorders, mental health problems—a Mayo Clinic genomic-based analysis showed he has episodic ataxia type I, a neurological disease characterized by hours-long attacks with no clear trigger. Dustin, a 24-year-old who functions at a first-grade level, is now on the second round of a medication doctors say should help reduce the frequency and severity of his episodes.

As genomics is used more and supported by ever-more robust analysis and interpretation, I expect these types of clear successes to become even more commonplace. And the value to the healthcare system and the patient is clear, expressed powerfully in the Bloomberg BusinessWeek piece:

While there isn’t yet a cure, Smith is participating in research that may one day lead to treatments or more supportive care. “Just being connected feels good. I felt alone for a long time,” she says. “And I want to do it for the bigger picture, too. Not just for myself, but so I can be counted.”

 

Bringing Together Core Technologies Unlocks Genomic Data to Improve Healthcare

genome analysis technologies

Within the “3-legged stool” of genomics-enabling technologies, lower-cost genome sequencing has reached a point of strong commercial viability, and the remaining two legs—genomic analysis tools database storage—are rapidly evolving to support the use of genomic information in medical care.

The adoption of genome sequencing technology is rapidly expanding as medical centers around the world embrace its utility in informing healthcare decisions—an emerging reality of personalized medicine.

There are three important areas of technology that are driving the use of genomic data in healthcare:  genome sequencing, genomic analysis tools, and database storage.

The first of these—genome sequencing—has advanced to the point that it is more widely accessible, with the cost of sequencing at nearly $1,000 or less. This lower cost of genome sequencing has reached a critical milestone to enable the use of sequencing as a mass-market product for medical care.

The second and third core genomic technologies—genomic analysis tools and database storage—are in the midst of evolution. Their progress and integration are critical for the next stage of adoption of genomic data into health care.

The rapidly evolving legs of the “3-legged stool” of genomics technology are genomic analysis tools and database storage.

  • Genomic Analysis Tools: Since the human genome was first sequenced more than a decade ago, an increasingly robust body of research has showcased the links between mutations identified in the genome and disease risk. Informatics tools have been developed by medical centers and genomics companies to apply to whole-genome samples. Increasingly, these genome analysis tools will need to adapt to the steady pace of new genomic linkages to disease and to operate at a level approaching “big data.”
  • Database Storage for Human Genomes: There are a growing number of robust databases of human genomes, including data for healthy people or those with certain diseases. When properly analyzed, these databases offer the potential to provide the medical community with a reference library against which to compare genetic data. Large-scale, high-quality databases are an essential element to cross-reference a patient genome to guide more informed medical decisions.

Recently, two leading genomics companies—WuXi and NextCODE Health—have combined their technology capabilities in these two areas. WuXi has industry-leading capabilities to analyze, store, and manage the vast amounts of genomic data. NextCODE Health brings a leading-edge system for sequence-based clinical diagnostic applications and genome analysis.

The combination of WuXi’s foundational genomic database storage and management and NextCODE’s sophisticated genome analysis tools will integrated the key components that are most rapidly evolving to apply genomics to medical care.

Initiatives like these advance the state-of-the-art in genomic analysis and database storage, bringing us to the heart of helping the world to fully harness personalized medicine and providing tools directly to doctors to provide better diagnostics and treatments to patients.

The progress to date has been amazing. Yet the opportunities ahead are even more extraordinary to improve the speed, accuracy, and accessibility of genomic information to improve human health.

A New Era, New Vision for WuXi and NextCODE Health

WuXi-NextCODE

WuXi PharmaTech has acquired NextCODE Health to create WuXi NextCODE Genomics, a global leader in genomic medicine. Pairing WuXi’s technology and existing reach with NextCODE’s leading analytics and database promises to advance the pace of genomics research today.

In the fast-paced genomics community, we continually look for new opportunities and strategies to enhance the value of genomics and use the increasingly robust body of genomic data for the advancement of clinical medicine.

We’re excited to announce a new, ambitious vision to do just that, with WuXi’s acquisition of NextCODE Health. NextCODE will be merged with WuXi’s existing Genome Center in wholly-owned subsidiary called WuXi NextCODE Genomics, with unique, comprehensive and global capabilities for using genomic data to deliver better medicine and improve healthcare.

WuXi, a Shanghai-based genomic laboratory service partner for companies in the pharma and biotech community, has already been collaborating with NextCODE to provide analysis services to customers of the WuXi Genome Center. Now, with the in-house capability to analyze, store, and manage the vast amount of genomic data, NextCODE’s industry-leading genome sequence analysis platform will expand WuXi’s core next-generation sequencing benefits and services.

Pairing WuXi’s technology and existing reach with NextCODE’s leading analytics and database promises to advance the pace of genomics research today. More importantly, however, this new era for NextCODE brings exciting opportunities to maximize the most advanced tools available today and contribute to major advances in genomic medicine.

Genetics-Based Advances in Rare Diseases: Ideas into Action

NextCODE Health-Claritas Genomics

Claritas Genomics and NextCODE have established a collaboration to support rare disease clinical care.  Combining robust sequencing with integrated diagnostic capabilities, the partnership aims to accelerate and augment the services provided to leading pediatric care organizations.

Today we have a tremendous opportunity to use the data being generated from genome sequencing to address the mysteries of rare genetic diseases affecting children. Though these diseases individually are rare, according to Global Genes, an estimated 7,000 different types of rare diseases affect more than 30 million people in the U.S., roughly half of whom are children.

To conduct diagnostic testing for pediatric genetic disorders, leading children’s hospitals are collaborating with specialized laboratories, including Claritas Genomics, a recognized leader in specialized pediatric genetic testing affiliated with Boston Children’s Hospital, part of the Harvard Medical School system.

The real opportunity lies in the analysis of raw genomic sequence data to identify patterns or markers of a rare disease. While it has been theoretically possible to use genomic sequencing to diagnose most rare diseases, a major hurdle has been in integrating dynamic informatics tools that can quickly interpret the data into accurate diagnostic insights and, ultimately, treatment options.

This is why Claritas Genomics and NextCODE have today established a collaboration, enhancing their collective capabilities to support rare disease clinical care. Combining robust sequencing with integrated diagnostic capabilities, the partnership will aim to accelerate and augment the services provided to leading pediatric care organizations.  Claritas has established a wide range of tests for genes known to be associated with pediatric disorders, which NextCODE is integrating into its clinical interface, resulting in accurate, reliable clinical reports. Learn more about NextCODE’s pioneering activities here.

Enabling this rapid, integrated approach to genomics-based care for rare diseases holds great promise for the community and for the many families who are anxiously seeking answers to these mysterious diseases.