Genomics in Cancer: Continuing to Push the Leading Edge

genomics in cancer - hannes smarason

Genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes.

The progress in the use of genomics to help prevent and treat cancer continues to grow at a pace that is impressive. Indeed, there is expanded use of genomics to drive patient care and improve outcomes across an ever-expanding number of cancers by a growing number of oncologists.

Genomic Knowledge Can Clearly Drive Better Care

Applying genomics to cancer treatment is a powerful clinical application, as genomics can provide a window into how to best treat a patient’s particular cancer as it:

  1. may help better understand the genetics of the tumor itself, and
  2. can provide insight into how cancerous tumors may grow and spread over time.

With a genomic-based approach to cancer care, oncologists can more personally tailor anti-cancer treatments to an individual tumor’s mutations, thus molecularly targeting the specific cancer’s Achilles heel. Already, there are well-documented successes of molecularly targeted anti-cancer agents, such as cancer drugs that target certain genes—HER2, EFGR, ALK, and others.

In 2015, the pace of adoption of genomics in clinical oncology has advanced significantly. Recent evidence of the accelerating use of genomics to help fight cancer includes:

  • Evolving from ‘why’ to ‘how’ to use genomics at leading cancer centers. At the top cancer care facilities, genomics has become part of the programmatic approach to provide certain cancer patients with optimal care—care that is fundamentally designed to lead to the best outcomes. The question for leading medical centers globally has evolved over the last few years from “do we need genomics?” to “for which cancer types and at what stages of cancer treatment and diagnosis can we best use genomic sequencing and analysis?”—an evolution from “why?” to “how?” at a very fundamental level. The accelerating use and deployment of genomics by leading medical facilities validates that they are deriving significant value from genomics, and that value is resulting ultimately in meaningfully advancing better care for cancer patients.
  • Expanding potential applications of genomics within different types of cancers, broadening the types of cancers and tumors that can potentially benefit from genomics. Researchers and clinicians continue to publish a wealth of information validating the potential of genomics to improve outcomes in certain types of cancer patients. In 2015 alone, highlights of these advancements include certain prostate cancers, brain cancers, rare types of pediatric kidney cancers, and even potential targets in certain non-small cell lung cancers.
  • Broadening acceptance in cancer prevention. Driven in part by the education of oncologists and physicians generally and in part by the empowerment of knowledgeable patients, people are seeking and benefiting from genetic tests that reveal their personal risk for certain tumors (such as BRCA for breast or ovarian cancers). The idea of using genomic analysis to predict an individual’s cancer risk by comparing their genome with databases of confirmed genetic mutations linked to disease is—for certain individuals with specific family histories and genetics—driving appropriate medical decisions for patients who may be at high risk for certain cancers.
  • Powering clinical trials with genomics. The use of genomics in cancer clinical trials – whether for inclusion in data-gathering or even screening of patients—has gone from rare to commonplace over recent years, and is improving knowledge around the safety and efficacy of drugs in cancer and beyond. Two large-scale cancer trials have been initiated in 2015 with the bold goal of substantially advancing the understanding and use of genomics in cancer care. The anti-cancer treatments being tested in both trials were selected for their activity on a specific molecular target, independent of tumor location and histology. The two trials are actively enrolling and are (1) an American Society of Clinical Oncology (ASCO)-sponsored study, called TAPUR (Targeted Agent and Profiling Utilization Registry) and National Cancer Institute (NCI) and is called NCI-MATCH (Molecular Analysis for Therapy Choice). These trials and any subsequent follow-on trials will doubtless provide insightful information to drive the growing use of genomics in improving cancer care.

In summary, genomics is helping to prevent and treat cancer at an accelerating rate, supporting the goal of oncologists to dramatically improve cancer patient outcomes. There are at least four frontiers where we can see substantial progress in the use of genomics in cancer care, including expanded use in leading medical centers, increased potential applications within cancer, widespread acceptance in cancer prevention, and an increase in the use of genomics within clinical trials. I am personally committed to continue to drive and accelerate this genomic revolution to continue to bring true progress in improving cancer care to patients in need globally.


Genomics-Based Medicine Coming Into View

NextCODE Health

NextCODE Health has quickly gained recognition for its unique capabilities to address unmet needs in the genomics space through a massive genomics database that interprets DNA samples to identify relevant disease markers.

The practice and adoption of genomic medicine is accelerating as technologies improve, costs fall and new insights drive better patient care. While many companies are supporting this emerging field, a select few are providing the unique perspectives and capabilities to advance progress even faster.

NextCODE Health made headlines less than a year ago with the announcement of its launch and funding by major investors in healthcare and biotechnology. The company quickly gained recognition for its unique capabilities to address unmet needs in the genomics space through a massive genomics database that interprets DNA samples to identify relevant disease markers. (See the features in Xconomy, Bio-IT World and PLOS Blog.) The company was later mentioned in Nature Biotechnology News for its potential contributions to genome studies by leveraging key reference data from deCODE’s Icelandic work in Iceland.

Its rapid trajectory since launch and the utility of its genomic analysis technology was featured in BioCentury in May, featuring testimonials from clinicians using NextCODE capabilities to diagnose patients at Boston Children’s Hospital, the Baylor College of Medicine, and the Sanford School of Medicine. In June, it was featured in a major interview with Bio-IT World and the company continues to expand. Since then, NextCODE has announced several programs through which global pioneers in clinical genomics research are applying its interpretation and analysis technology to support research and diagnosis in rare diseases, including:

As more organizations employ genomics in major research initiatives, NextCODE’s interpretation technology will be an increasingly important asset in delivering meaningful insights from the wealth of genomic data being produced. Visit NextCode for the latest on how the future of genomics-based medicine continues to evolve.