Let’s Speed the Genomic Revolution, UK CMO Says

Sally Davies genomics

Whatever path various societies take to tap the power of the genome to improve human health, a recent report from England’s Chief Medical Officer, Dame Sally Davies, calls out key elements for realizing that future sooner rather than later.

England’s Chief Medical Officer wants to build on the success of Genomics England’s 100,000 Genomes Project and take her country swiftly into the age of precision medicine. The goal is to get patients optimal treatment more quickly and with fewer side effects. That means using genomics to more accurately guide prescribing—initially for cancer, infections, and rare diseases—but increasingly for all conditions and overall wellness and prevention.

Dame Sally Davies’ vision is anchored in the work that Genomics England is engaged in today and to which WuXi NextCODE and other leading genomics organizations have contributed. It’s a rallying cry that many voices are joining and underpins our work not only in England, but also similar efforts we are helping to advance in countries near and far, from Ireland to Singapore.

Her call is particularly forceful in three areas that she rightly singles out as critical to realizing the potential of precision medicine to revolutionize healthcare:

  • Industrial scale: Genomics has in many ways been treated and developed as a “cottage industry,” yielding important advances. But the need is massive scale in the era of population health (e.g., whole-genome sequencing, or WGS).
  • Privacy AND data sharing: Dame Sally wants to provide and ensure high standards of privacy protection for genomic data but is adamant that this should not come at the price of stifling the data sharing and large-scale collaboration that will transform medical care and many patients’ lives. She wants to move beyond “genetic exceptionalism,” which holds that genomic data is fundamentally different or more valuable than other data. Like other sensitive data, we can protect genomic data well and use it for public benefit.
  • Public engagement: She calls for a new “social contract” in which we, as individuals and members of society, recognize that all of us will benefit if we allow data about our genomes to be studied. That holds whether we are talking within our own countries or globally.

In England, as elsewhere, these shifts require the input of political leaders, regulators, and a range of healthcare professionals, including researchers as well as care providers. Crucially, such a transformation also requires a level of commitment on the part of patients throughout the National Health Service (NHS) and citizenry in general. If England takes this bold step forward, it could have tremendous effects. But “NHS must act fast to keep its place at the forefront of global science,” said Davies. “This technology has the potential to change medicine forever.”

To date, more than 30,000 people have had their genomes sequenced as part of the 100,000 Genomes Project. But there are 55 million people in the UK, and Dame Sally would like to see genomic testing become as normal as blood tests and biopsies for cancer patients: She wants to “democratize” genomic medicine, making it available to every patient that needs it.

We share and are, indeed, taking part in helping to realize much of Dame Sally’s vision as we work to accelerate Genomics England’s work and engage with our partners globally. As we know, different societies have different models of healthcare and different approaches to research and care delivery. But the ability for people anywhere to tap into the power of the genome to improve their health is at the very core of our own mission as an organization, and we applaud Dame Sally for calling out some of the key elements for realizing that future sooner rather than later.

Whatever path different societies choose to follow toward precision medicine, her recent report provides one enlightening view of a starting point for making the leap.

email

2015: An Inflection Point for Genomics Adoption Around the Globe

2015 genomics hannes smarason

2015 is shaping up to be a significant year in the advancement and adoption of genome sequencing and personalized medicine around the globe.

The year 2015 is shaping up to be an inflection point in the advancement and adoption of genome sequencing and personalized medicine.  While private initiatives are often the centerpiece of media coverage, leading governments clearly have advanced a number of important initiatives this year.  Indeed, many governments around the globe are actively promoting widespread utilization of genomics, supporting academic research, establishing industry guidelines, and raising public awareness.

Governments Serving as Catalysts for Genomics Progress

The efforts of officials worldwide to engage with and support the private sector’s tremendous potential have helped to make 2015 a significant year for expanding the use of genomics in clinical care.  A few highlights of 2015 include:

— In the U.S., President Obama made precision health one of the centerpieces of his State of the Union address in January. Obama’s administration kicked this effort off by requesting a $215M investment in a Precision Medicine Initiative with the following key attributes:

  • The cornerstone of Obama’s proposal is the plan to collect and analyze genomic data from a million or more volunteers;
  • The initiative further supports genomics through expanded research into the genetic mutations that drive cancer;
  • Additional funding is earmarked to maintain databases and develop industry standards.

— Germany and the U.K. expanded eligibility for government-funded genetic testing for breast cancer patients.

— Israel announced its intent to establish a government-sponsored genetic database.

— Through the National Institutes of Health and the National Cancer Institute, the U.S. federal government proposed dozens of new funding opportunities to support research in genetic sequencing and analysis.

— Japan launched an Initiative on Rare and Undiagnosed Diseases to provide genomic analysis and expert consultation for up to 1,000 individuals with childhood onset of undiagnosed conditions.

— Through Genomics England (which I described in further detail here), the U.K. Department of Health tapped WuXi NextCODE and others to begin interpretation in its groundbreaking 100,000 Genomes Project.

In news today, the trend toward globalization of genomics continues, as private sector leaders aligned to meet the needs of the forward-looking government health initiatives of Qatar:

— WuXi NextCODE and the Sidra Medical and Research Center partner to power population genomics and precision medicine in Qatar. Our partnership will:

  • Facilitate clinical diagnostics;
  •  Accelerate research; and
  • Support the Qatar Genome Project.

As I have discussed in an earlier post, large-scale population studies are an essential step in harnessing the power of genomics to improve health worldwide.  Since WuXi NextCODE’s foundational heritage as part of deCODE Genetics’ landmark analysis of Icelanders, we have always developed the tools to help translate sequence data into precision medicine on a large scale.  In our work with Genomics England, our collaboration with Fudan Children’s Hospital to diagnose rare diseases in China, and now our partnership with Sidra, the team at WuXi NextCODE is leading the effort to realize the potential of genomics on a truly global scale. The increasing interest in supporting those efforts shown by leading governments across the globe is helping to drive the successful use and application of genomics worldwide.

Global Projects Move Genomic Medicine to the Next Level

nextcode-genomics-england-hannes-smarason

NextCODE takes top marks in Genomics England analysis and interpretation “bake-off:” NextCODE’s proven population-scale platform delivered the best results in rare disease and cancer clinical interpretation, as well as secondary analysis and variant refinement.

New genomics-based technologies and tools are making their way into a range of exciting research programs and clinical studies around the world. Leading-edge organizations are quickly adopting hardware for sequencing and systems for collecting genomic data. Now, the focus has turned to analysis and interpretation – the critical component necessary to gain the insights from the sequence data that will transform medicine.

Earlier this year, Genomics England announced investments for broad sequencing and analysis of 100,000 human genomes. At the time, Genomics England had selected Illumina as its sequencing partner and was coordinating resources and centers to support the effort, including resourcing for analysis and interpretation. [See blog post here]. Other initiatives, such as the Qatar genomics program and the initiatives by Longevity and Regeneron also represent the accelerated progress in seeking medical advancements from genomic data insights. [See blog post here.]

This week, Genomics England announced a select group of companies with advanced capabilities to move to the next stage of evaluation to provide clinical interpretation for the 100K Genomes Project. At the tip top was NextCODE, which received top marks by Genomics England for its analytical capabilities across all the categories evaluated: rare disease interpretation, secondary pipeline analysis and cancer interpretation. [See press release here.] The company’s advanced Genomically-Ordered Relational database, or GOR, combined with its clinical and discovery interfaces offer the most advanced and reliable capabilities to support the ambitious tasks undertaken by Genomics England, and are already proven at population scale. [Read more on the GOR database here.]

The coming months will be a very exciting time for genomic medicine, with interpretation taking the spotlight as we take leaps toward the next stage of personalized medicine.

Population-Scale Research Efforts Enabled by Progress in Sequencing

population-scale genomics

Significant insights gained from population-scale genomic studies, based on the knowledge of genetic variation and disease causation, will help to enable a new reality of personalized medicine and treatment.

The ability to sequence whole genomes quickly and economically is driving interest in population-scale sequencing efforts that can reveal meaningful insights on a much more systematic basis than previous approaches. A range of large initiatives announced recently are prime examples of the trend in population sequencing, including industry programs by Regeneron and Human Longevity, and the 100,000 Genomes Project by Genomics England. Perhaps better than any other effort since the founding of deCODE in Iceland, the establishment of a high-throughput Genomics Center at Sidra Medical and Research Center in Qatar embodies the movement toward these types of population studies. The eventual goal of the project is to sequence the entire Qatari population of some 300,000 people. But from the beginning, the Sidra facility will help advance genetic mapping projects, including the creation of Arab consensus genome to obtain a better understanding of genetic variants that influence health across Arab populations and, indeed, beyond. In addition to these efforts, the center will focus on uncovering the causes of rare genetic diseases. The significant insights that can be gained from population-scale studies, based on the knowledge of genetic variation and disease causation, will help to enable a new reality of personalized medicine and treatment. And this is where efficient, powerful and industrial-scale analysis will become critical. NextCODE’s analytics and interpretation systems have already been tested at such scale, as they are based on the world’s first and largest population genomics effort—that of deCODE. [see blog post] Our systems will be useful tools to efficiently deliver insights based on the vast amount of data that will be generated by these major population-based efforts to improve the state of global healthcare.

Trends in Sequencing and Analysis Today Leading to Tomorrow’s Clinical Advances

The insights we’re gaining from sequencing and analysis techniques are delivering new advances in healthcare with ever greater speed and precision.

The challenge for programs seeking to accelerate their research discoveries with genomic data is how to analyze the wealth of information—to make it clinically relevant and rapidly deliver reliable insights to better inform patient care.

The insights we’re gaining from sequencing and analysis techniques are delivering new advances in healthcare with ever greater speed and precision. It’s a particularly exciting time to be a part of this evolving industry, with continual opportunities for new clinical applications of these technologies and platforms.

Companies like Illumina and others who are delivering next-generation sequencing technologies are gaining global exposure. New partnerships and programs are placing these advanced techniques into the hands of the world’s leading clinicians and researchers, who are then applying them to some of today’s greatest medical challenges.  Recently, plans to integrate sequencing technologies have been announced by world renowned organizations like the Baylor College of Medicine in the U.S., Genomics England, and Sidra Medical and Research Center in Qatar.

The challenge for these and other programs seeking to accelerate their research discoveries with genomic data is how to analyze this wealth of information – to make it clinically relevant and rapidly deliver reliable insights to better inform patient care.

NextCODE Health is working to advance this piece of the puzzle with its Genomically Ordered Relational (GOR) database and its clinical and discovery interfaces (the Clinical Sequence Analyzer​™ and Sequence Miner™).  Combining next-generation sequencing techniques with increasingly robust analysis tools, NextCODE Health is helping to accelerate global research progress today to deliver unprecedented advances in patient care in the years just ahead.

Pioneering Genome Sequencing Effort in England Aims to Shape the Future of Global Medicine

£300 million in new investments for Genomics England

Genomics England 100,000 Genomes Project

Genomics England was set up by the UK Department of Health to deliver the 100,000 Genomes Project. Initially the focus will be on rare disease, cancer, and infectious disease. The project is currently in its pilot phase and will be completed by the end of 2017.

These are exciting times for large-scale sequencing projects. Last week, U.K. Prime Minister David Cameron announced over £300 million ($509.4 million) in new investments for Genomics England, which aims to sequence, analyze, and store the genomes of 100,000 UK National Health Service (NHS) patients by 2017. The investments include about £162 million ($275.1 million) from Illumina Inc. (NASDAQ:ILMN), the partner for the sequencing element of the project. In turn, Genomics England will pay Illumina about £78 million ($132.4 million) for its services.

At the same time, the Wellcome Trust will put £27 million ($45.8 million) into a new sequencing hub at its genome campus in Cambridge; the Medical Research Council, or MRC, is investing £24 million ($40.7 million) to support data analysis and interpretation, and the NHS will make £20 million ($34 million) available for the establishment of patient sequencing centers.

This is a prime example of how the implementation of sequencing technologies promises to drive a revolution in the structure of medical research. These new projects aim to capture more data on human DNA than ever before, with the goal of advancing care and solving healthcare challenges.

The 100,000 Genomes Project, developed by the NHS, has the potential to significantly influence the global community through its plans to integrate sequencing data into standard medical practice.

Genomics England plans to generate 100,000 whole genome sequences from NHS patients with cancer, rare diseases, and other conditions, and to share the resulting data for research and development purposes. In the early phases, the program will also seek to develop standards for consent, sample storage, data generation and variant analysis that may be useful for many other organizations conducting large-scale projects within public health systems.

The project is enlisting the help of organizations from around the world to undertake this significant effort. In fact, it recently selected Illumina to conduct the sequencing efforts and is evaluating technologies for storing, annotating, and interpreting the data so that it can be used  for both clinical diagnostics and drug discovery, development, and delivery to the right patients.

The challenges of analyzing data on such a large scale are formidable, but the end result carries great potential to address some of the significant unmet medical needs. NextCODE’s technology has already accomplished analytics on this scale based on its work with the Icelandic population through deCODE genetics. It’s an exciting prospect for advancing the future of genomics-driven medicine and one to watch.