WuXi NextCODE Named one of the “Top 10 Most Innovative Companies in Biotech” by Fast Company for Creating the World’s Leading Platform for Genomic Data

One of fast company's most innovative companies 2018

Wuxi NextCODE has been named one of Fast Company’s “Top 10 Most Innovative Companies in Biotech” for being the world’s leading platform for storing, sharing, and interpreting massive sets of genomic data. With offices in Shanghai, Cambridge and Reykjavik, we provide the infrastructure underpinning many of the largest national genome projects and rare disease efforts underway worldwide.

One notable example of our capabilities cited by the editors of Fast Company is the RareCODE rare disease diagnostics platform we launched approximately one year ago in collaboration with Fudan Children’s Hospital in Shanghai. It’s hard to think of work that better taps, according to the magazine’s criteria, “both heartstrings and purse strings and uses the engine of commerce to make a difference in the world.”

RareCODE is the first platform that applies global gold standard genomics to the diagnosis of rare disease, at scale, in China. As a result of this program, Fudan Children’s has been able to quickly and accurately diagnose thousands of rare disease patients, allowing clinicians to optimize their treatment and care.

In just the first calendar year since its launch, RareCODE generated more than 12,000 clinical reports. We and our partners at Fudan also used it for some 2500 cases in their neonatal intensive care unit (NICU). We are now generating more than 1,000 new reports each month.  Thanks to this program, Fudan clinicians have been able to provide diagnoses to nearly 40% of patients tested and recommend treatment for nearly two-thirds of them. In short, this partnership is now carrying out sequencing and delivering diagnoses at a rate that is equivalent to that of the world’s leading laboratories.

We are delighted to join outstanding partners and colleagues on Fast Company’s Top Biotechs list, including Novartis, Biogen, GE Healthcare, Spark Therapeutics, and Sophia Genetics. The winners are selected by the magazine’s reporting team from thousands of enterprises reviewed each year.

Learn more about this award, and the breakthrough genomic platform that helped us earn it.

email

2015: An Inflection Point for Genomics Adoption Around the Globe

2015 genomics hannes smarason

2015 is shaping up to be a significant year in the advancement and adoption of genome sequencing and personalized medicine around the globe.

The year 2015 is shaping up to be an inflection point in the advancement and adoption of genome sequencing and personalized medicine.  While private initiatives are often the centerpiece of media coverage, leading governments clearly have advanced a number of important initiatives this year.  Indeed, many governments around the globe are actively promoting widespread utilization of genomics, supporting academic research, establishing industry guidelines, and raising public awareness.

Governments Serving as Catalysts for Genomics Progress

The efforts of officials worldwide to engage with and support the private sector’s tremendous potential have helped to make 2015 a significant year for expanding the use of genomics in clinical care.  A few highlights of 2015 include:

— In the U.S., President Obama made precision health one of the centerpieces of his State of the Union address in January. Obama’s administration kicked this effort off by requesting a $215M investment in a Precision Medicine Initiative with the following key attributes:

  • The cornerstone of Obama’s proposal is the plan to collect and analyze genomic data from a million or more volunteers;
  • The initiative further supports genomics through expanded research into the genetic mutations that drive cancer;
  • Additional funding is earmarked to maintain databases and develop industry standards.

— Germany and the U.K. expanded eligibility for government-funded genetic testing for breast cancer patients.

— Israel announced its intent to establish a government-sponsored genetic database.

— Through the National Institutes of Health and the National Cancer Institute, the U.S. federal government proposed dozens of new funding opportunities to support research in genetic sequencing and analysis.

— Japan launched an Initiative on Rare and Undiagnosed Diseases to provide genomic analysis and expert consultation for up to 1,000 individuals with childhood onset of undiagnosed conditions.

— Through Genomics England (which I described in further detail here), the U.K. Department of Health tapped WuXi NextCODE and others to begin interpretation in its groundbreaking 100,000 Genomes Project.

In news today, the trend toward globalization of genomics continues, as private sector leaders aligned to meet the needs of the forward-looking government health initiatives of Qatar:

— WuXi NextCODE and the Sidra Medical and Research Center partner to power population genomics and precision medicine in Qatar. Our partnership will:

  • Facilitate clinical diagnostics;
  •  Accelerate research; and
  • Support the Qatar Genome Project.

As I have discussed in an earlier post, large-scale population studies are an essential step in harnessing the power of genomics to improve health worldwide.  Since WuXi NextCODE’s foundational heritage as part of deCODE Genetics’ landmark analysis of Icelanders, we have always developed the tools to help translate sequence data into precision medicine on a large scale.  In our work with Genomics England, our collaboration with Fudan Children’s Hospital to diagnose rare diseases in China, and now our partnership with Sidra, the team at WuXi NextCODE is leading the effort to realize the potential of genomics on a truly global scale. The increasing interest in supporting those efforts shown by leading governments across the globe is helping to drive the successful use and application of genomics worldwide.

Genomics for Rare Diseases: Going Global and Shifting the Care Paradigm

The use of genomics in rare disease diagnosis and treatment is going global

The benefits of genomics in rare diseases are increasingly making a difference to patients, their families, and their physicians, and they are being scaled globally.

The trend of accelerating the use of genomics in rare disease diagnosis and treatment is going global, driven by the important goal of reaching all people around the world, no matter where they live.

Active programs have now been deployed and exist in many populous countries around the world.

For instance, WuXi NextCODE has established active collaborative efforts in three continents, most recently adding Fudan Children’s Hospital as a partner in its efforts to lead whole genome diagnostics for rare diseases in China.

Over the coming weeks, I expect WuXi NextCODE to continue have news of its dedicated efforts to spread the application of genomics for rare diseases to all geographies.

Diagnosing Rare Diseases: Genomics Shifts the Paradigm

Rare diseases are an area of significant advancement for genomics, as the opportunity for improved diagnosis and treatment through the use of genomics is truly remarkable.

According to the National Institutes of Health (NIH), there are over 7,000 rare diseases affecting between 25 and 30 million Americans, which is nearly 1 in 10 people, making the overall prevalence of rare diseases significant. Since NIH believes that approximately 80 percent of rare diseases have genetic origins, the potential for genomic sequencing, interpretation, and analysis to offer a solution here is truly game-changing.

Every day there are new cases of children with “unknown” diseases, many of which are likely related to a hereditary genetic disorder. Sadly, these children and their families often spend years undergoing testing and experimental treatments for a wide range of diseases in an attempt to properly diagnose and treat them; usually, this so-called “diagnostic odyssey” is accompanied by a very high financial and emotional burden.

Genomics offers the potential to deliver a correct and precise diagnosis for rare diseases that have identifiable genetic causes. Indeed, case studies are rapidly accumulating that show that, by offering genomic sequencing and analysis services to patients with a suspected rare genetic disease, mutations that might be causing the disease may be identified, and thus correct treatment can be employed much earlier to eliminate the burden of a long-term diagnostic and treatment odyssey.  A recent article in Bloomberg BusinessWeek highlighted medical histories of two patients who recently received a diagnosis informed by genomics. In both these representative examples, genomic analyses provided an end to the burden, cost, and stress of their multidecade-long diagnostic odyssey:

  • Jackie Smith, 35, spent the 32 years from age 3 unable to receive a correct diagnosis that could account for her weak limbs and turned-in ankles, despite seeing many doctors on numerous occasions. Indeed, Jackie’s parents were told to “take the 3-year-old girl home and enjoy her while they could” …”[her disease] would probably kill her before she was old enough to drive.”  This past February, using genomic interpretation and analyses from Wuxi NextCODE, Claritas Genomics definitively identified her condition as centronuclear myopathy in less than three weeks.
  • Dustin Bennett, 24, would tremble and violently jerk for hours or days at a time and had been developmentally delayed since childhood. After dozens of doctor visits and incorrect diagnoses—seizures, muscle disorders, mental health problems—a Mayo Clinic genomic-based analysis showed he has episodic ataxia type I, a neurological disease characterized by hours-long attacks with no clear trigger. Dustin, a 24-year-old who functions at a first-grade level, is now on the second round of a medication doctors say should help reduce the frequency and severity of his episodes.

The benefits of genomics in rare diseases – to individuals, their families, and their physicians – are increasingly making a difference to patients.  These benefits are being seen in case after case – and they are being scaled globally, as leading medical centers in many countries around the world are using genomics to support their efforts in diagnosing and treating rare diseases.  I believe passionately in the game-changing potential of genomics to help rare disease patients and I am dedicated to advancing world-leading genomics globally to uncover new solutions for patients.