Advancing Autism Research By Sharing Genomic Data Online: The Simons Simplex Collection

THE NEXTCODE Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

THE NEXTCODE Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

Autism research is underway around the world to better understand the genetic basis for the disease, which is difficult to diagnose and has limited treatment options. With vast amounts of data being generated, the answers to this challenging disease may lie in the consolidation of this global data.

The newly launched NextCODE Exchange (read the release here) may be a critical solution in changing how autism is diagnosed and treated. The Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

With the Exchange, the SSC will be accessible to the world’s autism researchers to harmonize the growing body of relevant genomic data. By enabling the rapid analysis of massive amounts of sequencing data followed by instant collaboration and validation of findings, the availability of the SSC and other hosted data will accelerate the pace of discovery in this field.

This simple concept is likely to help usher in a new era of genomic medicine, offering global access to data that can answer questions to some of today’s most challenging diseases.

Learn more about the NextCODE Exchange and the Simons Simplex Collection here.

email

Genomics and Rare Diseases: Hope for Solving Unanswered Questions

genomics and rare diseases

Leading institutions around the world are leveraging the power of advanced sequencing technology to solve some of the greatest unanswered questions in medicine.

As we learn more about disease biology and uncover new insights thanks to the availability of genomic technologies, we are making meaningful progress in identifying means to address many rare diseases for which there is little medical hope today.

With these new genomic tools and insights, a wide range of opportunities has emerged to improve diagnosis and treatment of rare diseases. Over the past few years, DNA sequencing has begun to uncover the causes of rare diseases and, at the heart of each case solved is a patient and a family that has gained new understanding about their condition. With time, these success stories in diagnosis will lead to more successes in treatment.

Now more than ever, there is more hope that identifying the key mutations will lead to better understanding of the biology of disease and then to novel therapies. Better and faster technologies are being promoted by leaders in the field of genomics that are enabling much more rapid analysis and interpretation of a patient’s genome to find answers. The critical first step is to obtain sufficient data to analyze, compare it against a robust database of reference data, and gain an accurate understanding of potential mutations associated with these rare conditions.

As researchers focus on specific areas, new partnerships are extending access to data and accelerating progress with rare diseases around the world. Recently, genomic analysis collaborations were initiated by ACoRD at University College Dublin to implement NextCODE’s proprietary database and analytical tools to mine whole genome data for variants linked to autism spectrum disorders. [See blog post here]. Another genomic analysis program with ANZAC in Australia applies advanced sequencing analysis technology to better understand X-linked Charcot-Marie-Tooth Syndrome, a rare and progressively debilitating neurodegenerative disorder. [See blog post here] More collaborations are in the works and we’ll be talking about them as soon as we can.

We look forward to the results of these and other collaborations as leading institutions around the world make efforts to leverage the power of advanced sequencing technology to solve some of the greatest unanswered questions in medicine.