As Cancer Databases Grow, A Global Platform Leaps the Big Data Hurdle

cancer databases

As massive cancer databases like The Cancer Genome Atlas (TCGA) proliferate and expand worldwide, WuXi NextCODE expects to see—and to drive—a boom in discoveries of cancer biomarkers that will advance our ability to treat cancer and improve outcomes for patients.

One of the fastest-growing areas in medicine today is the creation of massive cancer databases. Their aim is to provide the scale of data required to unravel the complexity and heterogeneity of cancer—the key to getting patients more precise diagnoses faster, and to getting them the best treatments for their particular disease.

In short, this data has the potential to save lives.

Such databases are not new, but they are now proliferating and expanding at an unprecedented pace. Driven by governments, hospitals, and pharmaceutical companies, they catalogue a growing range of genetic data and biomarkers together with clinical information about their effects on disease, therapy, and outcomes.

Only with such data can we answer the key questions: Does a certain marker suggest that a cancer will be especially aggressive? Does it signal that the tumor responds best to particular treatments? Are there new pathways involved in particular cancers that we can target to develop new drugs?

It’s the cutting edge of oncology, but to be powered to answer these questions, these databases have to be very, very big. They have to bring together whole-genome sequence data on patients and their tumors as well as a host of other ‘omics and biological data. One of the biggest challenges to realizing this potential is to manage and analyze datasets of that scale around the world. It’s one we are addressing in a unique manner through our global platform.

One of the most renowned and widely used of these is The Cancer Genome Atlas, a collaboration between the National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI). TCGA data is freely available to those who qualify, and there is a lot of it. It already comprises 2.5 petabytes of data describing tumor tissue and matched normal tissues for 33 tumor types from more than 11,000 patients. Researchers all over the world can apply to use this data for their own studies, and many have.

Yet asking questions of TCGA alone can take months for most groups and requires sophisticated tools. At Boston’s recent Bio-IT World conference, WuXi NextCODE’s director of tumor product development, Jim Lund, explained how we have put TCGA on our global platform—providing a turnkey solution with integrated analytics to transform the data into valuable findings.

Jim and his team have imported into WuXi NextCODE’s cloud platform virtually all key TCGA data: raw whole exome sequence data from patients and tumors, as well as variant calls using MuTect2 and Varscan2; RNA and microRNA sequence and expression data; and data on copy number variation, methylation arrays, and some 150 different clinical attributes. But this data isn’t just hosted in the cloud: it can all now be queried directly and at high speed online, enabling researchers to quickly ask and answer highly complex questions without having to download any data or provide their own bioinformatics software.

To demonstrate the power of this approach, Jim’s team decided to run the same queries in a recent published study that looked at sequence data from the exons of 173 genes in 2,433 primary breast tumors (Pereira et al., Nature 2016). They were specifically looking for driver mutations of cancer’s spread and growth. In a matter of minutes, rather than months, they were able to replicate key mutations identified in the study. That analysis was then extended to all cancer genes, and additional driver genes were found. More important, because they were able to correlate these mutations with clinical outcomes data, they were also able to begin systematically matching specific mutation patterns to patient outcomes.

Next, Jim’s team looked at the genomics of lung adenocarcinoma, the leading cause of death from cancer worldwide. Following up on the findings in another published study (Collison et al., Nature 2014), they profiled the 230 samples examined in the paper and immediately made several observations. Eighteen genes were mutated in a significant number of samples; EGFR mutations (which are well known) were more common in samples from women; and RBM10 mutations were more common in samples from men. These results were extended to 613 samples and shown to be robust. But because they had a wide range of data including mRNA, microRNA, DNA sequencing, and methylation, Jim’s team was further able to suggest some actual biological processes that may be fueling the origin and growth of lung adenocarcinomas.

What’s making this type of research possible? It’s our global platform for genomic data. The platform spans everything required to make the genome useful for helping patients around the world, from CLIA/CAP sequencing to the world’s most widely used system for organizing, mining, and sharing large genomic datasets. At its heart is our database—the Genomically Ordered Relational database (GORdb). Because it references sequence data according to its position on the genome, it makes queries of tens of thousands of samples computationally efficient, enabling the fast, online mining of vast datasets stored in multiple locations.

That’s how we are making the TCGA—and every major reference dataset in the world—available and directly minable by any researcher using our platform. Those users can combine all that data with their own to conduct original research at massive scale.

These breast and lung cancer studies are just two of more than a thousand that have been carried out so far on TCGA data. As more such datasets become available, we expect to see—and to drive—a boom in discoveries of cancer markers that will advance our ability to treat cancer and improve outcomes for patients. For those who want to go further still, our proprietary DeepCODE AI tools offer a means of layering in even more datasets to drive insights even deeper into the biology of cancer and other diseases. And that’s a topic I’ll return to in the weeks ahead.

email

Speeding Diagnosis of Rare Diseases

WuXi NextCODE Claritas

Claritas Genomics combines physician experience with next-generation sequencing and WuXi NextCODE’s analytics to accelerate rare disease diagnosis.

It’s one of the most heartbreaking and frustrating things for parents and pediatricians. When a child presents with a constellation of symptoms that doesn’t point to a known disease, what do you do?

Typically, these kids undergo a battery of tests, some of which will eventually be for single genes suspected to play a role in their health problems. But what if those tests come up negative? That leaves the families and doctors wringing their hands as they wonder what to do next.

That was the case with a patient at Boston Children’s Hospital (BCH). He was a boy who, at six months, wasn’t sitting up, smiling, or doing most of the things babies his age typically do. Instead, he seemed “rigid” to his mom, and then he developed a severe respiratory virus and was hospitalized. He also had repeated seizures and eventually needed a tracheotomy—a tube placed through an incision in his throat to help him breath.

Usually, such kids then begin going through what is known as a “diagnostic odyssey”—a long and arduous journey from doctor to doctor and lab to lab.

BCH doctors are trying a new approach. In 2013, the hospital spun out Claritas Genomics, a specialized genetics diagnostics business that combines the experience of the hospital’s physicians with the power of next-generation sequencing and WuXi NextCODE’s advanced analytics. Timothy Yu, a neurologist and researcher at BCH, helped found Claritas to provide a more holistic approach to rare disease.

WuXi NextCODE’s advanced analytics play a key role in improving the speed and efficiency of such diagnostics. Reading the genome isn’t the major challenge anymore—now the issue is finding the relevant mutations in those three billion base pairs.

The data from a single genome can comprise more than 100 gigabytes, which is enough to fill the hard drive on a good laptop computer. Even the exome, which comprises the parts of the genome that encode proteins, can be 15 gigabytes. To diagnose a rare disease, doctors need to find sequence variations and then scour the research to find out what those actually do. That used to take months to years, and many of the variants were simply classified as being of “unknown significance,” without any further information or the ability to check again as the field of knowledge grew.

WuXi NextCODE’s system has begun to make this a click-and-search task. Our knowledgebase can mine all publicly available global reference datasets simultaneously and in real time to show all there is to know about any given variant and its likely biological impact. By keeping the data in a WuXi NextCODE research database, such as the one BCH is growing every day, our system can also quickly rerun the analysis and provide new information as soon as it becomes known.

Claritas is continually expanding the range of its services. Most recently, the group received conditional approval from the New York Department of Health for three new “region of interest assays” as well as one for mitochondrial DNA. That brings the number of Claritas’s approved tests in that state up to six and means more patients in New York will benefit from this new technology.

Children at BCH with ambiguous diagnoses now regularly undergo a whole exome scan early in their clinical journey. The data is then triaged. It is examined first for the most obvious mutations and then more data is progressively analyzed as necessary. With the consent of parents and security measures for privacy, that data can also become part of research datasets at BCH and other major hospitals around the world, so that the growing data pool can benefit that child and others.

This combination of expertise and technology helped Claritas Genomics find an answer for that baby boy and his family mentioned earlier. Heather Olson, the boy’s treating neurologist, had the boy’s exome scanned through Claritas Genomics, and 130 genetic variations were identified that could have caused one or more of the symptoms. WuXi NextCODE’s system helped narrow that down to only six variants that could have possibly been passed on by the boy’s parents. Olson and Yu finally focused on one, a mutation of the BRAT1 gene, which served as a diagnosis. A paper published by Yu, Olson, and colleagues, which describes this mutation and children affected by it, should help other physicians make this diagnosis more quickly in the future.

Yu presented more on Claritas’s novel platform recently at Boston’s Bio-IT World meeting. He explained how the platform helps doctors to much more quickly and accurately diagnose kids with diseases not previously described.

“Thanks to the speed of the platform, we can get a whole clinical exome completed in as little as two weeks,” he said.

The growing database of genetic variants and their effects also means more patients will get an actual diagnosis, rather than walking away still wondering what could be going on.

The ability to diagnose more cases is a start to unravelling the causes of the estimated 7,000 different rare diseases estimated to exist. And it’s a necessary first step towards developing new therapies for those conditions, too.