Advancing Autism Research By Sharing Genomic Data Online: The Simons Simplex Collection

THE NEXTCODE Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

THE NEXTCODE Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

Autism research is underway around the world to better understand the genetic basis for the disease, which is difficult to diagnose and has limited treatment options. With vast amounts of data being generated, the answers to this challenging disease may lie in the consolidation of this global data.

The newly launched NextCODE Exchange (read the release here) may be a critical solution in changing how autism is diagnosed and treated. The Exchange is hosting the Simons Simplex Collection (SSC), a global resource for research on autism spectrum disorders comprising genomic data from nearly 2,800 families.

With the Exchange, the SSC will be accessible to the world’s autism researchers to harmonize the growing body of relevant genomic data. By enabling the rapid analysis of massive amounts of sequencing data followed by instant collaboration and validation of findings, the availability of the SSC and other hosted data will accelerate the pace of discovery in this field.

This simple concept is likely to help usher in a new era of genomic medicine, offering global access to data that can answer questions to some of today’s most challenging diseases.

Learn more about the NextCODE Exchange and the Simons Simplex Collection here.

email

Maintaining Momentum Post-ASHG: Maximizing the Value of Large Genomic Databases

The newly launched NextCODE Exchange provides a browser-based hub for multi-center sharing and collaboration on collective data from massive whole-genome databases like the Haplotype Reference Consortium (HRC).

The newly launched NextCODE Exchange provides a browser-based hub for multi-center sharing and collaboration on collective data from massive whole-genome databases like the Haplotype Reference Consortium (HRC).

The American Society of Human Genetics (ASHG) meeting convened this week in San Diego, bringing together genetics experts from around the world to discuss programs with great potential to advance genomic-based medicine in the years to come.

To maintain the momentum generated this week, we need to find ways to integrate these important ideas, insights and programs, and to maximize the use of the massive databases that have been launched to support research on cancer, rare diseases and other pressing health topics.

One of the databases unveiled during the meeting was the Haplotype Reference Consortium, which aims to become the world’s most comprehensive database of genetic variations. Large databases like the HRC, along with several others already underway, can be tremendously helpful to researchers finding answers to some of the most challenging diseases. But there remains a significant bottleneck: these large, cumbersome databases cannot easily be shared and manipulated, limiting their utility for broad, multi-center genomic research.

The solution lies in the newly launched NextCODE Exchange (see release here). This browser-based hub allows for the sharing and harmonizing of massive whole-genome databases like the HRC to accelerate research. The integrated architecture allows users to visually confirm and validate findings in raw sequences, collaborating and sharing with others around the world who may have complementary research underway.

The momentum generated during ASHG will be multiplied by sharing and learning from the world’s collective genomic data on the NextCODE Exchange. Learn more here.

Imagine the Potential: The World’s First Online Hub for Global Genomic Data Access

The NextCODE Exchange, a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The NextCODE Exchange, a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The field of genomic medicine is rapidly advancing as the research community becomes more comfortable manipulating genomic data with the goal of discovering insights about disease causes and risks. Yet each database is hosted within separate organizations, organized in unique ways and vastly too cumbersome to easily share with others who may be working on similar research.

This weekend a new tool launched to enable just that. The NextCODE Exchange (see release here), a new browser-based hub, allows for real-time sharing of whole genome collections in a simple, consistent format.

The availability of this Exchange is a critical advance in extending the utility of genomic data by allowing organizations around the world to access and harmonize large complementary datasets, potentially multiplying their study data sets to gain more reliable insights than ever before.

Already, numerous organizations are participating in the NextCODE Exchange to add and share their genomic data, including clinicians and researchers affiliated with Boston Children’s Hospital, University College Dublin, Queensland Institute of Medical Research (Australia), and Saitama Medical University (Japan).

As new institutions look to the Exchange to share genomic data, this hub holds significant potential to help advance progress in genomic-based medicine.

Learn more about the NextCODE Exchange here.

Global Projects Move Genomic Medicine to the Next Level

nextcode-genomics-england-hannes-smarason

NextCODE takes top marks in Genomics England analysis and interpretation “bake-off:” NextCODE’s proven population-scale platform delivered the best results in rare disease and cancer clinical interpretation, as well as secondary analysis and variant refinement.

New genomics-based technologies and tools are making their way into a range of exciting research programs and clinical studies around the world. Leading-edge organizations are quickly adopting hardware for sequencing and systems for collecting genomic data. Now, the focus has turned to analysis and interpretation – the critical component necessary to gain the insights from the sequence data that will transform medicine.

Earlier this year, Genomics England announced investments for broad sequencing and analysis of 100,000 human genomes. At the time, Genomics England had selected Illumina as its sequencing partner and was coordinating resources and centers to support the effort, including resourcing for analysis and interpretation. [See blog post here]. Other initiatives, such as the Qatar genomics program and the initiatives by Longevity and Regeneron also represent the accelerated progress in seeking medical advancements from genomic data insights. [See blog post here.]

This week, Genomics England announced a select group of companies with advanced capabilities to move to the next stage of evaluation to provide clinical interpretation for the 100K Genomes Project. At the tip top was NextCODE, which received top marks by Genomics England for its analytical capabilities across all the categories evaluated: rare disease interpretation, secondary pipeline analysis and cancer interpretation. [See press release here.] The company’s advanced Genomically-Ordered Relational database, or GOR, combined with its clinical and discovery interfaces offer the most advanced and reliable capabilities to support the ambitious tasks undertaken by Genomics England, and are already proven at population scale. [Read more on the GOR database here.]

The coming months will be a very exciting time for genomic medicine, with interpretation taking the spotlight as we take leaps toward the next stage of personalized medicine.