Early Adopters of Sequencing in the Clinic

early adopters of sequencing in the clinic

Leaders in the medical community are actively enhancing their facilities with DNA sequencers and supercomputers—steps toward the routine sequencing of patient genomes that will inform the full spectrum of care decisions.

It is increasingly evident that sequencing and analyzing genomic information can contribute to more informed healthcare decisions, and major research institutions and medical centers around the world seem to agree.

Leaders in the medical community are actively enhancing their facilities with DNA sequencers and supercomputers, recognizing the efficiencies of having this advanced technology at their disposal for innovative research programs. And as they look to the future, they are taking steps toward the routine sequencing of patient genomes that will inform the full spectrum of care decisions, from defining risk, to diagnosing disease, to defining the ideal course of treatment for the best possible outcome.

Just a few examples of the major advances in the use of sequencing technologies that have been announced recently…

From medical centers:

  • Mount Sinai Medical Center in New York initiated a program in which 24,000 patients participate in a biobank to include their DNA sequence and research over their lifetimes. The program, called BioMe™, is among the largest in the United States.
  • Memorial Sloan-Kettering Cancer Center researchers are active in a range of collaborations that seek to understand the molecular changes that characterize cancer, the largest of which is The Cancer Genome Atlas (TCGA), a project jointly funded by the NCI and the National Human Genome Research Institute. MSK currently houses one of TCGA’s Genome Data Analysis Centers.
  • Phoenix Children’s Hospital launched a new molecular and personalized medicine research institute that will “bring genomics research to the forefront of pediatrics.” The infrastructure will include a range of capabilities, such as a biospecimen repository, DNA sequencing and analysis, and a CLIA lab for genomic profiling.

And research institutions:

  • The Wellcome Trust Sanger Institute is dramatically upgrading its storage and data management capacity.  The Institute already operates 30 DNA sequencers, each of which generates roughly a terabyte of data every day. New upgrades will double their capacity and improve data management and organization software.
  • Harvard Medical School’s Center for Biomedical Informatics, conducts informatics research with a strong emphasis on translational science informed by innovative computational strategies; the research staff use mathematical modeling to predict when genetic information could lead to more effective treatment.

By members of industry:

  • Google is jumping into the genomics industry with the launch of “Calico,” a new company that will focus on genomic sequencing and advanced analytics to identify solutions for some of the most challenging diseases today.
  • “N-of-One” is a company offering personalized cancer treatment strategies as a new employee benefit tool for innovative, health-minded employers. Through the service, the company provides interpretation of molecular profiling to employees, their family members fighting cancer and their physicians to help inform treatment decisions.

And even the U.S. government:

  • The National Institutes of Health is one of the greatest proponents of genomic sequencing for research purposes. In fact, a recently initiated program is funding research teams to examine whether sequencing newborn genomes or exomes may provide useful information beyond what is currently captured in newborn screening programs.
  • Further, in the fight against infectious diseases and “super-bugs,” the National Institute of Allergy and Infectious Diseases established the Genomic Sequencing Centers for Infectious Diseases (GSCID) to sequencing priority pathogens, microorganisms responsible for emerging and re-emerging infectious diseases and related organisms.

With such a broad array of innovative research underway within the halls of the world’s leading institutions, there is no doubt sequencing is on the verge of delivering exciting breakthroughs in medicine. In fact, we’re seeing evidence of this with NextCODE, which has engaged with several “early adopter” organizations around the globe.  Check it out here.

email

Prime Targets for Whole Genome Sequencing: Cancer and Rare Diseases

genome sequencing cancer and rare genetic diseases

There’s a huge opportunity ahead for genome sequencing to impact human health, beginning with cancer and rare genetic diseases.

There is a documented history of conditions classified as “diseases of unknown origin”—in these cases, the biological mechanisms that led to the disease are simply unknown or have not yet been discovered. Yet as we learn more every day, certain diseases have clear links to underlying genetic mutations. As such, analyzing the genome sequence of a patient diagnosed with one of these diseases might help lead to a better understanding of the disease etiology and potential treatment strategies, particularly in the areas of cancer and rare genetic disorders.

Preventing cancer

While cancers have a range of causes and correlations, many have a set of genetic mutations that drive malignant growth. Recent advances have already introduced sequencing to the cancer category, as cancer patients are benefiting from genetic tests that reveal their personal risk for certain tumors (such as BRCA for breast cancer).  Recently, evidence has suggested that certain genetic mutations could be responsible for the development of a wide range of tumor types (see the recent study in Nature, for example). These findings support the idea of using genomic analysis to predict an individual’s cancer risk, by comparing their genome with databases of confirmed genetic mutations linked to disease.

Treating Cancer

In addition, genomic sequencing and analysis may help better understand the genetics of the tumor itself, and can provide explanations for how tumors evolve over time. Tests are increasingly available today that can help predict a tumor’s response to a specific type of treatment. With a genomic-based approach to cancer care, researchers expect that treatment will evolve to be more tailored to an individual tumor’s mutations and, eventually, through drugs that can attack several targeted gene mutations at once. Already we’ve seen evidence of this in certain areas, such as breast cancer drugs intended for use only in patients who test positive for the HER2 gene.

 Identifying Rare Diseases

Rare diseases are another area of significant opportunity for improved diagnosis and treatment through the use of genomics.  Every year there are new cases of children with “unknown” diseases, many of which are likely related to a hereditary genetic disorder. These children and their families often spend years undergoing testing and experimental treatments for a wide range of diseases to attempt to properly diagnose and treat them, usually accompanied by a very high financial and emotional burden.

There is a hope that by offering whole genome sequencing to patients with a suspected rare genetic disease, mutations that might be causing the disease may be identified, and thus correct treatment can be employed much earlier to eliminate the burden of a long-term diagnostic and treatment odyssey.

Cancer and rare genetic diseases are just the start.  There’s a huge opportunity ahead for genome sequencing to impact human health, and personalized medicine may be just on the horizon.  In fact, we are focusing on just these areas with NextCODE, the newly launched company I’ve founded. The improvements brought about by the genomics industry, with the help of the technologies and services offered at NextCODE, will provide enormous value to patients, doctors, and the health care system as a whole.

The Technologies That are Key to Unlocking Genome Analysis

Lower-cost genome sequencing, genomic analysis tools support personalized medicine

Lower-cost genome sequencing, genomic analysis tools, and reference databases for human genomes are the “3-legged stool” that will help the world reach personalized medicine.

Genome sequencing technology available today can accurately sequence a whole genome from an individual’s test sample for a surprisingly low cost—a few thousand dollars (and dropping fast). As a result, the adoption of this technology is rapidly expanding as medical centers around the world embrace its utility in informing healthcare decisions—an emerging reality of personalized medicine.

Three important areas of technology progress have enabled the medical community to reach this point:

  1. Lower-Cost Genome Sequencing: Major technological advances have reduced the cost of sequencing to nearly $1,000 or less, a critical milestone to enable the use of sequencing as a mass-market product for medical care.
  2. Genomic Analysis Tools: Since the human genome was first sequenced more than a decade ago, an increasingly robust body of research has showcased the links between mutations identified in the genome and disease risk. Informatics tools have been developed by medical centers and genomics companies to apply to whole-genome samples. Increasingly, these genome analysis tools will need to adapt to the steady pace of new genomic linkages to disease and to operate at a level approaching “big data.”
  3. Reference Databases for Human Genomes: There are a growing number of robust databases of human genomes, including data for healthy people or those with certain diseases.  When properly analyzed, these databases offer the potential to provide the medical community with a reference library against which to compare genetic data. Large-scale, high-quality databases are an essential element to cross-reference a patient genome to guide more informed medical decisions.

These three technology domains represent the “3-legged stool” that will help the world reach personalized medicine. The technology is in place, and the corresponding insights and uses are expanding every day. Yet there are challenges to be resolved before implementing these tools on a universal basis.

For example, logistically, how will new DNA and supercomputing equipment be accessed by medical centers, and how will the data be stored? And more importantly, what is the most efficient way to compare an individual’s genome to the massive body of genomic information available to help inform medical decisions for that patient?

One important part of the solution: we must turn to “big data” solutions to manage and make use of the enormous amounts of data produced through sequencing. The whole-genome sequence of a single human is roughly 100GB—that’s the entire storage capacity of a single Macbook Air®.

The progress to date has been amazing. Yet the opportunities ahead are even more extraordinary to improve the speed, accuracy, and accessibility of genomic information to improve human health.